+254 709 983000/
+254 709 983676

In vitro activities of piperaquine, lumefantrine, and dihydroartemisinin in Kenyan Plasmodium falciparum isolates and polymorphisms in pfcrt and pfmdr1

We have analyzed the in vitro chemosensitivity profiles of 115 Kenyan isolates for chloroquine (CQ), piperaquine, lumefantrine (LM), and dihydroartemisinin in association with polymorphisms in pfcrt at codon 76 and pfmdr1 at codon 86, as well as with variations of the copy number of pfmdr1. The median drug concentrations that inhibit 50% of parasite growth (IC(50)s) were 41 nM (interquartile range [IQR], 18 to 73 nM), 50 nM (IQR, 29 to 96 nM), 32 nM (IQR, 17 to 46 nM), and 2 nM (IQR, 1 to 3 nM) for CQ, LM, piperaquine, and dihydroartemisinin, respectively. The activity of CQ correlated inversely with that of LM (r(2) = -0.26; P = 0.02). Interestingly, parasites for which LM IC(50)s were higher were wild type for pfcrt-76 and pfmdr1-86. All isolates had one pfmdr1 copy. Thus, the decrease in LM activity is associated with the selection of wild-type pfcrt-76 and pfmdr1-86 parasites, a feature that accounts for the inverse relationship between CQ and LM. Therefore, the use of LM-artemether is likely to lead to the selection of more CQ-susceptible parasites.
Read More

In vitro activities of piperaquine, lumefantrine, and dihydroartemisinin in Kenyan Plasmodium falciparum isolates and polymorphisms in pfcrt and pfmdr1

We have analyzed the in vitro chemosensitivity profiles of 115 Kenyan isolates for chloroquine (CQ), piperaquine, lumefantrine (LM), and dihydroartemisinin in association with polymorphisms in pfcrt at codon 76 and pfmdr1 at codon 86, as well as with variations of the copy number of pfmdr1. The median drug concentrations that inhibit 50% of parasite growth (IC(50)s) were 41 nM (interquartile range [IQR], 18 to 73 nM), 50 nM (IQR, 29 to 96 nM), 32 nM (IQR, 17 to 46 nM), and 2 nM (IQR, 1 to 3 nM) for CQ, LM, piperaquine, and dihydroartemisinin, respectively. The activity of CQ correlated inversely with that of LM (r(2) = -0.26; P = 0.02). Interestingly, parasites for which LM IC(50)s were higher were wild type for pfcrt-76 and pfmdr1-86. All isolates had one pfmdr1 copy. Thus, the decrease in LM activity is associated with the selection of wild-type pfcrt-76 and pfmdr1-86 parasites, a feature that accounts for the inverse relationship between CQ and LM. Therefore, the use of LM-artemether is likely to lead to the selection of more CQ-susceptible parasites.
Read More

Hypothermia in children with severe malnutrition: low prevalence on the tropical coast of Kenya

Hypothermia is stated as a common complication of severe malnutrition although there are little primary data to support this. We performed a prospective study of children with severe acute malnutrition (SAM) admitted to a district hospital in Kenya. We documented the prevalence of hypothermia and examined its association with outcome and ambient temperature. During a 2-year period 667 children were recruited. Hypothermia was recorded in only 12 out of 15 191 (0.08%) temperature observations and as a single event in 12 children (2% of cases). There was no correlation with ambient temperature. Although mortality rates were higher in children with hypothermia (4/12, 33%) than those without (121/655, 18%), the timing of hypothermia did not coincide with clinical deterioration. Hypothermia was a rare marker of severity in our setting. We recommend that other observations be highlighted to identify high risk groups and that routine temperature observations be reduced wherever staff are few.
Read More

Chloroquine resistance before and after its withdrawal in Kenya

BACKGROUND: The spread of resistance to chloroquine (CQ) led to its withdrawal from use in most countries in sub-Saharan Africa in the 1990s. In Malawi, this withdrawal was followed by a rapid reduction in the frequency of resistance to the point where the drug is now considered to be effective once again, just nine years after its withdrawal. In this report, the polymorphisms of markers associated with CQ-resistance against Plasmodium falciparum isolates from coastal Kenya (Kilifi) were investigated, from 1993, prior to the withdrawal of CQ, to 2006, seven years after its withdrawal. Changes to those that occurred in the dihydrofolate reductase gene (dhfr) that confers resistance to the replacement drug, pyrimethamine/sulphadoxine were also compared. METHODS: Mutations associated with CQ resistance, at codons 76 of pfcrt, at 86 of pfmdr1, and at codons 51, 59 and 164 of dhfr were analysed using PCR-restriction enzyme methods. In total, 406, 240 and 323 isolates were genotyped for pfcrt-76, pfmdr1-86 and dhfr, respectively. RESULTS: From 1993 to 2006, the frequency of the pfcrt-76 mutant significantly decreased from around 95% to 60%, while the frequency of pfmdr1-86 did not decline, remaining around 75%. Though the frequency of dhfr mutants was already high (around 80%) at the start of the study, this frequency increased to above 95% during the study period. Mutation at codon 164 of dhfr was analysed in 2006 samples, and none of them had this mutation. CONCLUSION: In accord with the study in Malawi, a reduction in resistance to CQ following official withdrawal in 1999 was found, but unlike Malawi, the decline of resistance to CQ in Kilifi was much slower. It is estimated that, at current rates of decline, it will take 13 more years for the clinical efficacy of CQ to be restored in Kilifi. In addition, CQ resistance was declining before the drug's official withdrawal, suggesting that, prior to the official ban, the use of CQ had decreased, probably due to its poor clinical effectiveness.
Read More

Chloroquine resistance before and after its withdrawal in Kenya

BACKGROUND: The spread of resistance to chloroquine (CQ) led to its withdrawal from use in most countries in sub-Saharan Africa in the 1990s. In Malawi, this withdrawal was followed by a rapid reduction in the frequency of resistance to the point where the drug is now considered to be effective once again, just nine years after its withdrawal. In this report, the polymorphisms of markers associated with CQ-resistance against Plasmodium falciparum isolates from coastal Kenya (Kilifi) were investigated, from 1993, prior to the withdrawal of CQ, to 2006, seven years after its withdrawal. Changes to those that occurred in the dihydrofolate reductase gene (dhfr) that confers resistance to the replacement drug, pyrimethamine/sulphadoxine were also compared. METHODS: Mutations associated with CQ resistance, at codons 76 of pfcrt, at 86 of pfmdr1, and at codons 51, 59 and 164 of dhfr were analysed using PCR-restriction enzyme methods. In total, 406, 240 and 323 isolates were genotyped for pfcrt-76, pfmdr1-86 and dhfr, respectively. RESULTS: From 1993 to 2006, the frequency of the pfcrt-76 mutant significantly decreased from around 95% to 60%, while the frequency of pfmdr1-86 did not decline, remaining around 75%. Though the frequency of dhfr mutants was already high (around 80%) at the start of the study, this frequency increased to above 95% during the study period. Mutation at codon 164 of dhfr was analysed in 2006 samples, and none of them had this mutation. CONCLUSION: In accord with the study in Malawi, a reduction in resistance to CQ following official withdrawal in 1999 was found, but unlike Malawi, the decline of resistance to CQ in Kilifi was much slower. It is estimated that, at current rates of decline, it will take 13 more years for the clinical efficacy of CQ to be restored in Kilifi. In addition, CQ resistance was declining before the drug's official withdrawal, suggesting that, prior to the official ban, the use of CQ had decreased, probably due to its poor clinical effectiveness.
Read More