Contribution of different aquatic habitats to adult Anopheles arabiensis and Culex quinquefasciatus (Diptera: Culicidae) production in a rice agroecosystem in Mwea, Kenya

Mwangangi JM, Muturi EJ, Shililu J, Muriu SM, Jacob B, Kabiru EW, Mbogo CM, Githure J, Novak R
J Vector Ecol. 2008;33

Permenent descriptor

Studies were conducted to determine the contribution of diverse larval habitats to adult Anopheles arabiensis Patton and Culex quinquefasciatus Say production in a rice land agro-ecosystem in Mwea, Kenya. Two sizes of cages were placed in different habitat types to investigate the influence of non-mosquito invertebrates on larval mortalities and the contribution of each habitat type to mosquito productivities, respectively. These emergence traps had fine netting material covers to prevent adult mosquitoes from ovipositing in the area covered by the trap and immature mosquitoes from entering the cages. The emergence of Anopheles arabiensis in seeps, tire tracks, temporary pools, and paddies was 10.53%, 17.31%, 12.50%, and 2.14%, respectively, while the corresponding values for Cx. quinquefasciatus were 16.85% in tire tracks, 8.39% in temporary pools, and 5.65% in the paddies from 0.125 m3 cages during the study. Cages measuring 1 m3 were placed in different habitat types which included paddy, swamp, marsh, ditch, pool, and seep to determine larval habitat productivity. An. arabiensis was the predominant anopheline species (98.0%, n = 232), although a few Anopheles coustani Laveran (2.0%, n = 5) emerged from the habitats. The productivity for An. arabiensis larvae was 6.0 mosquitoes per m2 for the temporary pools, 5.5 for paddy, 5.4 for marsh, 2.7 for ditch, and 0.6 for seep. The Cx. quinquefasciatus larval habitat productivity was 47.8 mosquitoes per m2 for paddies, 35.7 for ditches, 11.1 for marshes, 4.2 for seeps, 2.4 for swamps, and 1.0 for temporary pools. Pools, paddy, and marsh habitat types were the most productive larval habitats for An. arabiensis while paddy, ditch, and marsh were the most productive larval habitats for Cx. quinquefasciatus. The most common non-mosquito invertebrate composition in the cages included Dytiscidae, Notonectidae, Belostomatidae, and Ephemerellidae, and their presence negatively affected the number of emergent mosquitoes from the cages. In conclusion, freshly formed habitats are the most productive aquatic habitats, while old and more permanent habitats are the least productive due to natural regulation of mosquito immatures.