Abstract

Spatial variation and clustering of anaemia prevalence in school-aged children in Western Kenya

Robert BN, Cherono A, Mumo E, Mwandawiro C, Okoyo C, Gichuki PM, Blanford JL, Snow RW, Okiro EA
PLoS One. 2023;18

Permenent descriptor
https://doi.org/10.1371/journal.pone.0282382


Anaemia surveillance has overlooked school-aged children (SAC), hence information on this age group is scarce. This study examined the spatial variation of anaemia prevalence among SAC (5-14 years) in western Kenya, a region associated with high malaria infection rates. A total of 8051 SAC were examined from 82 schools across eight counties in Western Kenya in February 2022. Haemoglobin (Hb) concentrations were assessed at the school and village level and anaemia defined as Hb<11.5g/dl for age 5-11yrs and Hb <12.0g/dl for 12-14yrs after adjusting for altitude. Moran's I analysis was used to measure spatial autocorrelation, and local clusters of anaemia were mapped using spatial scan statistics and local indices of spatial association (LISA). The prevalence of anaemia among SAC was 27.8%. The spatial variation of anaemia was non-random, with Global Moran's I 0.2 (p-value < 0.002). Two significant anaemia cluster windows were identified: Cluster 1 (LLR = 38.9, RR = 1.4, prevalence = 32.0%) and cluster 2 (LLR = 23.6, RR = 1.6, prevalence = 45.5%) at schools and cluster 1 (LLR = 41.3, RR = 1.4, prevalence = 33.3%) and cluster 2 (LLR = 24.5, RR = 1.6, prevalence = 36.8%) at villages. Additionally, LISA analysis identified ten school catchments as anaemia hotspots corresponding geographically to SatScan clusters. Anaemia in the SAC is a public health problem in the Western region of Kenya with some localised areas presenting greater risk relative to others. Increasing coverage of interventions, geographically targeting the prevention of anaemia in the SAC, including malaria, is required to alleviate the burden among children attending school in Western Kenya.