Abstract

Epstein-Barr virus and malaria upregulate AID and APOBEC3 enzymes, but only AID seems to play a major mutagenic role in Burkitt lymphoma

Summerauer AM, Jaggi V, Ogwang R, Traxel S, Colombo L, Amundsen E, Eyer T, Subramanian B, Fehr J, Mantel PY, Idro R, Burgler S
Eur J Immunol. 2022;52

Permenent descriptor
https://doi.org/10.1002/eji.202249820


Endemic Burkitt lymphoma (eBL) is characterized by an oncogenic IGH/c-MYC translocation and Epstein-Barr virus (EBV) positivity, and is epidemiologically linked to Plasmodium falciparum malaria. Both EBV and malaria are thought to contribute to eBL by inducing the expression of activation-induced cytidine deaminase (AID), an enzyme involved in the IGH/c-MYC translocation. AID/apolipoprotein B mRNA editing catalytic polypeptide-like (AID/APOBEC) family enzymes have recently emerged as potent mutagenic sources in a variety of cancers, but apart from AID, their involvement in eBL and their regulation by EBV and P. falciparum is unknown. Here, we show that upon inoculation with EBV, human B cells strongly upregulate the expression of enzymatically active APOBEC3B and APOBEC3G. In addition, we found significantly increased levels of APOBEC3A in B cells of malaria patients, which correlated with parasite load. Interestingly, despite the fact that APOBEC3A, APOBEC3B, and APOBEC3G caused c-MYC mutations when overexpressed in HEK293T cells, a mutational enrichment in eBL tumors was only detected in AID motifs. This suggests that even though the EBV- and P. falciparum-directed immune response triggers the expression and activity of several AID/APOBEC members, only the upregulation of AID has oncogenic consequences, while the induction of the APOBEC3 subfamily may primarily have immunoprotective functions.